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Abstract

In this paper we consider the problem of natural gas consumption hourly fore-
cast on the basis of hourly movement of temperature and natural gas consumption
in the preceding period. There are various methods and approaches for solving this
problem in the literature. Some mathematical models with linear and nonlinear
model functions relating to natural gas consumption forecast with the past natural
gas consumption data, temperature data and temperature forecast data, are men-
tioned. The methods are tested on concrete examples referring to temperature and
natural gas consumption for the area of the city of Osijek (Croatia) from the begin-
ning of the year 2008. The results show that most acceptable forecast is provided
by mathematical models in which natural gas consumption and temperature are
related explicitly.

Keywords: Natural gas consumption, Mathematical model, Least Squares, Least Ab-
solute Deviations

1 Introduction
Due to the fact that natural gas emits much less CO2 than coal and is the cleanest burning
of all fossil fuels, it can be considered as an important adjunct to renewable energy sources
such as wind or solar, as well as a bridge to the new energy economy [1]. In order to achieve
lower emissions of global warming pollution it is important to efficiently use natural gas.
EU countries are highly dependent upon import of gas [2]. Besides some other measures,
the efficient usage includes building models for accurate prediction of gas consumption,
which can directly lower the purchase costs for distributors as well as for final consumers.
An accurate prediction of gas consumption is also needed due to the fact that distributors
are required (by their suppliers) to nominate the amount of natural gas they will need for
the next day within a regulated tolerance interval.

Previous research in the area of energy consumption (gas or electricity) reveals that
various deterministic and stochastic models have been applied to describe and forecast
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natural gas consumption [3]. Past load and weather data were generally used as the
model inputs, although some authors show that other data are also relevant. Darbellay
and Slama [4] forecasted short term demand for electricity in the Czech Republic by using
neural networks and the ARMA model. They found that forecasting the short-term evo-
lution of the Czech electric load is primarily a linear problem, although there are certain
conditions under which neural networks could be superior to linear models. The normal-
ized mean square error (NMSE) and the mean absolute percentage error (MAPE) were
used as measures of model successfulness. Beccali et al. [5] predicted daily electric load
of a suburban area in Italy. Their input variables included 24-hours weather data (hourly
dry bulb temperatures, relative humidity, global solar radiation) along with historical load
data. Thaler et al. [6] used the radial basis neural network algorithm to build a model for
energy consumption in the gas distribution system in Slovenia. Besides calculating the
prediction error, the authors estimated the probability distribution of prediction for the
one-day time interval, which can be used to estimate the risk of energy demand beyond a
certain prescribed value. They also proposed a cost function that includes operation and
control costs of a distribution system as well as penalties related to excess energy demand.
Monthly gas consumption of residential customers in Croatia was investigated by [7], and
the multivariate regression analysis showed dependance of consumption and the average
monthly temperature, while the impact of other input predictors was found less signifi-
cant. Potočnik et al. [8] use a statistics-based machine forecasting model to predict future
consumption of natural gas in Slovenia in 2005 and 2006. They use previous consumption,
past weather data, weather forecast, and some additional parameters, such as seasonal
effects and nominations as input variables. In addition to that, they emphasize a need to
define a control strategy that combines an energy demand forecasting model, an economic
incentive model and a risk model. Building such strategy is also highlighted as of capital
interest for an optimal management of a gas distribution system, and in conjunction with
careful planning of a pipeline network, it could also harness energy recovery from pipeline
pressure energy [9, 10].

It is obvious from the above that models created for different countries and regions
vary according to the methodology used, selection of input variables, time horizons, and
the accuracy of prediction.

The main focus of this paper is on the methodology regarding prediction of the hourly
consumption of natural gas. In order to provide an efficient model, its accuracy is criti-
cal. Previous authors mostly used statistical forecasting methods, such as autoregressive
moving average (ARMA), cycle analysis, multiple regression, and recently artificial neu-
ral networks [4, 11] while obtaining different results. Here we use several advanced linear
and nonlinear mathematical models such as exponential, Gompertz and logistic model.
The methods were tested on a Croatian dataset, and some functional relations among
temperature and gas consumption were revealed. The obtained results could be used
in explaining the dependencies among variables necessary to build an online system for
energy distribution management, not only for gas, but also for electricity or water distri-
bution.
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2 Problem statement
Given are the data (ti, Ti, yi), i = 1, . . . ,m, where ti is the time (in hours), Ti is the
temperature in time ti, and yi are quantities of the gas consumed in that particular
hour. On the basis of these data natural gas consumption in hourly intervals in the
next period should be forecast. This problem is considered in numerous papers (see e.g.
[5, 12, 13, 8, 14]). Thereby it is also possible to take into account other relevant data
(seasonal information, days of the week, holidays, etc.). Similar problems also occur with
electricity or water consumption (see [5, 4, 6]). As an illustration, Fig.1 shows movement
of hourly natural gas consumption and air temperature in the city of Osijek (Croatia)
for the first 40 days in 2008. A 24-hour periodicity in data can be observed immediately

Natural gas consumption

Temperature

5 10 15 20 25 30 35 40
day

Figure 1: Air temperature and natural gas consumption in hourly intervals in the city of
Osijek in the first 40 days in 2008

(see also [5, 12, 8]). In order to confirm this hypohesis, on the basis of data referring
to temperature movement (ti, Ti), i = 1, . . . ,m and natural gas consumption (ti, yi), i =
1, . . . ,m, respectively, we estimate the best Least Squares (LS) optimal parameters of the
model function

f(x; a, b, c, d) = a+ b sin
(2π
c
x+ d

)
. (1)

LS-optimal parameters of model function (1) are shown in Table 1. These results clearly
confirm the hypothesis on a 24-hour periodicity with respect to temperature and natural
gas consumption movement.

a∗ b∗ c∗ d∗

Temperature -1.85444 2.17864 24.0633 5.31868
Consumption 36.8154 9.08336 24.0126 5.38884

Table 1: LS-optimal parameters of model function (1)

Further, similarly to [14], we will consider natural gas consumption estimation of in-
dividual residential and small commercial customers, whose consumption depends mainly
on temperature movement. This consideration does not include large industrial consumers
that have to nominate their consumption on a daily basis.

Several various approaches for solving this problem can be found in the literature:
artificial neural networks, mathematical modelling and regression analysis, as well as
various statistical methods (see e.g. [5, 12, 13, 4, 6, 15, 3]).
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3 Implicit dependence of natural gas consumption on
temperature

The simplest way of expressing the dependence of natural gas consumption on temperature
is a hypothesis that this dependence is linearly implicitly contained in hourly natural gas
consumption data (ti, yi), i = 1, . . . ,m. Furthermore, assuming that in addition to the
basic period T = 24 there exist another several shortest periodical influences, on the basis
of hourly natural gas consumption data in a few preceding days we can search for optimal
parameters of the model function which consists of linear and trigonometric part

f(t; a, b, c, γ) = a0 + γt+ a1 cos 2π
T
t+ b1 sin 2π

T
t+

+ a2 cos 2π
c1
t+ b2 sin 2π

c1
t+ · · ·

+ ar cos 2π
cr−1

t+ br sin 2π
cr−1

t, T = 24, (2)

where a = (a0, a1, . . . , ar), b = (b1, . . . , br), c = (c1, . . . , cr−1), r ≥ 2. Thereby optimal
parameters a∗, b∗, c∗, γ∗ can be searched for by applying the LS-method (see e.g. [16, 17,
18, 19]):

F2(a, b, c, γ) =
m∑

i=1
wi(yi − f(ti; a, b, c, γ))2 → min

a,b,c,γ
, (3)

or by applying the Least Absolute Deviations (LAD) method (see e.g. [16, 20, 21, 22]):

F1(a, b, c, γ) =
m∑

i=1
wi|yi − f(ti; a, b, c, γ)| → min

a,b,c,γ
. (4)

Thereby the weights of the data wi > 0 are defined such that more recent data are more
influential than the older data. This can be achieved by using corresponding weight
functions (see [19]):

wi = W

(
|i−m|
m

)
, i = 1, . . . ,m, (5)

W (u) =
{

(1 − u3)3, 0 ≤ u ≤ 1,
0, u > 1. or W (u) = e−σu2

, σ > 0.

The LS method is applied if the data errors are normally distributed, and if we suppose
that outliers can appear among the data (e.g. simultaneous switching on of smaller
industrial consumers), then the application of the LAD-principle is preferred. It should
be stressed here that minimizing functionals (3–4) in both approaches are not simple and
that special methods for their minimization should be used (see e.g. [20, 21, 22, 23, 24]).
Knowing the optimal model function of the form (2) we can try to forecast the hourly
natural gas consumption for the next day.
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Figure 2: Forecast on the basis of linear – trigonometric model function

Example 1. For natural gas consumption data already mentioned for the city of Osijek
we will predict natural gas consumption on the basis of linear–trigonometric model func-
tions (2) by applying LAD-principle (4).1 As an illustration, we will determine optimal
parameters of model function (2) on the basis of data from the 13th − 15th, 14th − 16th

and 15th − 17th day in 2008, for the purpose of consumption forecast for the 16th, 17th

and 18th day of the year 2008, respectively. In Fig.2 actual consumption and forecast con-
sumption are denoted by a blue and a red curve, respectively. It may be noticed that the
forecast obtained in this way does not react fast enough to temperature change. Namely,
the influence of temperature change on natural gas consumption must be expressed more
directly.

4 Explicit dependence of natural gas consumption on
temperature

In Example 1 it can be seen that a significant temperature change influences natural gas
consumption fast and directly (see also [5, 12]). Let us consider this dependence in more
detail. Let (T 0

i , y
0
i ), i = 1, . . . ,m be temperature data and natural gas consumption data

in preceding m days at a fixed hour t0. On the basis of these data we will try to identify
dependence of natural gas consumption on temperature. Fig.3 shows the aforementioned
data for the city of Osijek at t0 = 6:00 a.m., 9:00 a.m., 12:00. Several jutting dots represent
switching on of larger industrial consumers. This dependence can be used in various ways
for the purpose of natural gas consumption forecast.

-20 -10 0 10 20 30 40 -20 -10 0 10 20 30 40 -20 -10 0 10 20 30 40

t0 = 6:00 a.m. t0 = 9:00 a.m. t0 = 12:00

Figure 3: Dependence of natural gas consumption on temperature in Osijek at t0 =
6:00 a.m., 9:00 a.m., 12:00

1All evaluations and illustrations were done by using Mathematica 6 on a PC (CPU: 2.00 GHz Intel
Core 2 Duo processor, Memory: 1.99 GB DDR2) on the basis of our own software.
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4.1 Applications of Fermat – Torricelli – Weber point
One possibility is the application of the Fermat – Torricelli – Weber (FTW) problem (see
[23, 5, 24]). Namely, if for the next day at t0 temperature T0 is forecast, then we can try
to determine natural gas consumption y0 at hour t0 such that

F (y0) = min
y∈[0,+∞⟩

F (y), F (y) =
m∑

i=1
wid(P (y), Pi), (6)

where P (y) = (T0, y), Pi = (T 0
i , y

0
i ), and d : R2 → [0,+∞⟩ is some metric function.
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Figure 4: FTW-point: forecast temperature and consumption forecast (red dot) and
actual temperature and consumption (blue dot)

Weights of the data wi > 0 can be defined by weight function (5) such that bigger
weights are assigned points Pi = (T 0

i , y
0
i ) for which temperature T 0

i is closer to forecast
value T0. If the minimum of functional (6) is attained for y0, then that value represents
natural gas consumption forecast for the next day at t0 hour. The point P0 = (T0, y0) is
the FTW-point.

Let us note that in the literature there are various possibilities referring to selection
of metric function d. Also, instead of requiring the sum of distances to be minimal, we
can request the maximal distance to be minimal (see [23, 24]).

Example 2. On the basis of natural gas consumption data and temperature data for the
city of Osijek the application of the FTW-point is illustrated for the purpose of natural
gas consumption forecast. Thereby we will use the Euclidean metric function, so that the
corresponding functional (6) becomes

F (y) =
m∑

i=1
wi

√
(T 0

i − T0)2 + (y0
i − y)2.

In this case minimization given in (6) can be carried out by the Weiszfeld iterative proce-
dure (see e.g. [25]).

y(k+1) =
m∑

i=1
wi

y0
i

ρi(y(k))

(
m∑

i=1
wi

1
ρi(y(k))

)−1

,

ρi(y(k)) =
√

(T 0
i − T0)2 + (y0

i − y(k))2, k = 0, 1, . . .
Fig.4 shows points (T 0

i , y
0
i ) for several days at t0 = 12:00. Thereby the darker black dots

represent the data (T 0
i , y

0
i ) with bigger weights. This figure also shows forecast temperature
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and consumption forecast (red dot) and actual temperature and consumption (blue dot).
The quality of hourly natural gas consumption forecast (red) and relative day errors in
percents for the days mentioned can be seen in Fig.5 and Table 2, respectively.
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Figure 5: FTW-point: forecast (red) and actual (blue) natural gas consumption at 12:00

4.2 Functional dependence of natural gas consumption and tem-
perature

Another possibility on the basis of data (T 0
i , y

0
i ), i = 1, . . . ,m is to try to functionally

link natural gas consumption to temperature at a fixed hour t0. In Fig.3 it can be
seen that these data can be described e.g. by decreasing exponential model function
T 7→ be−cT , b, c > 0.

If we take into account that a decrease in temperature causes an increase in consump-
tion to a certain value unknown in advance, and by increasing temperature it is reduced
to zero (see e. g. [26], then Gompertz model function T 7→ ea−becT

, a, b, c > 0 (see e.g.
[3, 27]) or logistic model function T 7→ a

1+becT , a, b, c > 0 (see [3, 28]) will be used for the
description of this functional dependence as a model. The shapes of these model functions
are shown in Fig.6.

T 7→ be−cT , b, c > 0 T 7→ ea−becT
, a, b, c > 0 T 7→ a

1+becT , a, b, c > 0

Figure 6: Exponential, Gompertz and logistic model function

4.2.1 Application of Gompertz model function

On the basis of temperature and natural gas consumption data (T 0
i , y

0
i ), i = 1, . . . ,m in

preceding m days at a fixed hour t0 we should estimate optimal parameters (a0, b0, c0) of
the Gompertz model function

G(T ; a, b, c) = ea−becT

, a, b, c > 0, (7)
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in accordance with the assumption that in the next day at t0 temperature T0 is forecast.
The forecast of natural gas consumption for the next (m + 1)-th day at t0 hour will be
given by G(T0; a0, b0, c0).

Since outliers can appear among the data (see Fig.3), parameters of Gompertz model
function (7) are estimated according to the LAD-principle by minimizing the functional

F1(a, b, c) =
m∑

i=1
wi|y0

i − ea−becT 0
i | → min

a,b,c
. (8)

Thereby weights of the data wi > 0 can be defined such that more recent data have bigger
weights than older data

wi = W

(
|i−m|
m

)
, i = 1, . . . ,m, W (u) = e−σu2

, σ > 0, (9)

or such that the data (T 0
i , y

0
i ) for which temperature T 0

i is closer to the forecast value T0
have bigger weights than the data referring to temperatures that significantly differ from
the forecast value T0

wi = W

(
|T 0

i − T0|
T0

)
, i = 1, . . . ,m, W (u) = e−σu2

, σ > 0. (10)

It is of course best to combine these two approaches:

wi = W

(
|i−m|
m

,
|T 0

i − T0|
T0

)
, i = 1, . . . ,m, (11)

W (u, v) = e−σ1u2−σ1v2
, σ1, σ2 ≥ 0.

The problem of minimizing functional (8) is a numerically very demanding nondif-
ferentiable nonlinear minimization problem. For solving this problem there exist general
methods (see e.g. [29]) and corresponding ready-made software (Mathematica, Matlab,
SAS, Statistica). It happens often that by using given software minimization of func-
tional (8) cannot be done or very often it gives wrong solutions. This is the reason why
instead of minimizing functional (8) it is proposed (see e.g. [30]) to minimize functional

Φ(a, b, c) =
m∑

i=1
wi| ln y0

i − a+ becT 0
i | → min

a,b,c
. (12)

The problem of minimizing functional (12) can be considered as a one-dimensional
minimization problem.

min
c>0

ψ(c), (13)

whereby the value of the function ψ in some point ĉ is

ψ(ĉ) = min
a,b>0

m∑
i=1

wi| ln yi − a+ beĉT 0
i |. (14)
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Figure 7: Data points and Gompertz and linear model function

Minimization problem (14) can be solved by applying the Two Points Method2 (see [21])
and one-dimensional minimization problem (13) can be solved by the Brent method
(see[31]) or some of methods mentioned in [29].

As an illustration, consider the data (T 0
i , y

0
i ), i = 1, . . . ,m, m = 399 at a selected fixed

hour t0 = 10:00 a.m. Thereby, in Fig.7a data (T 0
i , y

0
i ) with bigger weights wi are shown

by darker black points. Point (T0, y
0
m+1), which represents a pair (forecast temperature,

actual consumption) on the 400-th day is given in Fig.7a by a blue point. The closer the
point to the Gompertz curve, the better the forecast.

Example 3. For the data on natural gas consumption for the city of Osijek that were
used earlier Fig.7a shows actual consumption (blue curve) and consumption forecast (red
curve) obtained by applying the Gompertz model function for 398th, 399th and 400th day.
The quality of hourly natural gas consumption forecast and relative day errors in percents
for the mentioned days can be seen in Fig.8 and Table 2, respectively.
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Figure 8: Actual consumption (blue curve) and consumption forecast (red curve) obtained
by applying the Gompertz model function

4.2.2 Linear dependence of natural gas consumption and temperature

In Section 4.2.1, on the basis of natural gas consumption data and temperature data
(T 0

i , y
0
i ), i = 1, . . . ,m in preceding m days at a fixed hour t0 we estimated optimal param-

2Our own software available at http://www.mathos.hr/seminar/software/WTP.m
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eters (a0, b0, c0) of the Gompertz model function with the assumption that temperature
T0 is forecast for the next day at t0.

Since we are practically interested only in the behavior of consumption at t0 hour for
the temperature close to T0, then the Gompertz model function can be approximated by
a linear model function L(T ) = αT + β, whose parameters α, β can be determined by
minimizing the functional

Φ(α, β) =
m∑

i=1
wi|y0

i − αT 0
i − β|, (15)

where weights of the data wi > 0 can also be determined as in Section 4.2.1. In such way
the problem is reduced to the problem of determining a best weighted LAD-line 3 (see
[21]).

As an illustration, consider the data (T 0
i , y

0
i ), i = 1, . . . ,m, m = 399 at a fixed hour

t0 = 10:00 a.m. Thereby, in Fig.7b data (T 0
i , y

0
i ) with bigger weights wi are shown by

darker black points. Point (T0, y
0
m+1), which represents a pair (forecast temperature,

actual consumption) on the 400-th day is given in Fig.7b by a blue point. The closer that
point to the straight line, the better the forecast.

Finally, let us compare the results obtained by applying the FTW-point, Gompertz
and linear model function. On the basis of data from the preceding period and by the
aforementioned methods we will compare results obtained for three selected days (398–
400). Table 2 displays actual daily consumption and forecast according to the FTW-point,
Gompertz and linear model and relative daily errors in percents, and in Fig.9 the forecast
quality is observed in more detail.

From the given illustrations and conducted experiments it can be noticed that linear
approximation gives an acceptable forecast for practical needs.

FTW estimation Gompertz model func. Linear model func.
Day Actual F(T0) Relative err. G(T0) Relative err. L(T0) Relative err.

consumption (in %) (in %) (in %)
398 83 828 86 767 3.5 86 293 2.9 85 171 1.6
399 78 610 84 300 7.2 82 853 5.4 81 274 3.4
400 76 613 80 160 4.6 79 117 3.3 76 158 0.6

Table 2: Comparison of forecast consumption with actual natural gas consumption

4.3 Extension of the model
Given are temperature data and natural gas consumption data (T 0

i , y
0
i ), i = 1, . . . ,m in

preceding m days at a fixed hour t0. Suppose that natural gas consumption y0
i on the i-th

day depends on temperatures at a fixed hour t0 in preceding ν days linearly

y0
i = α0 + α1T

0
i + α2T

0
i−1 + · · · + ανT

0
i−ν+1 + εi, i = ν, . . . ,m, (16)

3Our own software available at: http://www.mathos.hr/seminar/software/WTP.m
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Figure 9: Comparison of actual daily natural gas consumption for three selected days
(blue) and estimation obtained by applying the FTW-point (red), Gompertz model (or-
ange) and linear model (green)

or nonlinearly

y0
i = α0(T 0

i )α1(T 0
i−1)α2 · · · (T 0

i−ν+1)αν + εi, i = ν, . . . ,m, (17)

or as a linear combination of nonlinear model functions (i.e. Gompertz model functions)

y0
i = α1e

−b1ec1T 0
i + α2e

−b2e
c2T 0

i−1 + · · · + ανe
−bνe

cν T 0
i−ν+1 + εi, (18)

bk, ck > 0, i = ν, . . . ,m.

The unknown parameters in (16–18) can be searched for as best LAD-solutions of overde-
termined systems of equations. Thereby the weights wi > 0 are again defined as in
Section 4.2.1. Note that the problem of estimating parameters of model function (16)
leads to searching for a best LAD-solution of an overdetermined system of linear equa-
tions (see e.g. [16, 22]), whereas the problem of estimating parameters of model function
(17–18) is a difficult nonlinear separable LAD-problem.

5 Conclusions
The paper presents several possible methods for forecasting natural gas hourly consump-
tion on the basis of the past natural gas consumption data, temperature data and tem-
perature forecast data. Based upon mutual comparison of the given methods it can be
concluded that practically most acceptable forecast is provided by mathematical models
in which natural gas consumption and temperature are related explicitly. Since in the
model this dependence is considered at the fixed hour t0 for the temperature close to
T0, it is shown that linear approximation does not significantly lag behind approximation
by means of the Gompertz model function. Application of the FTW-point also yields
practically acceptable results.

The observed problem is relevant to gas distribution networks, and the methodological
results obtained in this paper could be of interest in planning the management operations
of such complex systems which depend not only on hourly behavior of external air tem-
perature but also on other relevant data, such as fluctuations influenced by the control
strategy of particular plants. The functional dependencies of other input variables should
be investigated in further research. Due to the fact that some plants, mainly addressing
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residential heating and hot water production, work for a given hour period during a day
and their control strategy is of the on/off type, the results could be used for building
an online control system that will be able not only to accurately predict the next-hour
consumption, but also to react to some internal and external conditions.
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